Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.

Identifieur interne : 001251 ( Main/Exploration ); précédent : 001250; suivant : 001252

Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.

Auteurs : Víctor G Mez-Toribio [Espagne] ; Ana B. García-Martín ; María J. Martínez ; Angel T. Martínez ; Francisco Guillén

Source :

RBID : pubmed:19376890

Descripteurs français

English descriptors

Abstract

The induction of hydroxyl radical (OH) production via quinone redox cycling in white-rot fungi was investigated to improve pollutant degradation. In particular, we examined the influence of 4-methoxybenzaldehyde (anisaldehyde), Mn(2+), and oxalate on Pleurotus eryngii OH generation. Our standard quinone redox cycling conditions combined mycelium from laccase-producing cultures with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-EDTA. The main reactions involved in OH production under these conditions have been shown to be (i) DBQ reduction to hydroquinone (DBQH(2)) by cell-bound dehydrogenase activities; (ii) DBQH(2) oxidation to semiquinone (DBQ(-)) by laccase; (iii) DBQ(-) autoxidation, catalyzed by Fe(3+)-EDTA, producing superoxide (O(2)(-)) and Fe(2+)-EDTA; (iv) O(2)(-) dismutation, generating H(2)O(2); and (v) the Fenton reaction. Compared to standard quinone redox cycling conditions, OH production was increased 1.2- and 3.0-fold by the presence of anisaldehyde and Mn(2+), respectively, and 3.1-fold by substituting Fe(3+)-EDTA with Fe(3+)-oxalate. A 6.3-fold increase was obtained by combining Mn(2+) and Fe(3+)-oxalate. These increases were due to enhanced production of H(2)O(2) via anisaldehyde redox cycling and O(2)(-) reduction by Mn(2+). They were also caused by the acceleration of the DBQ redox cycle as a consequence of DBQH(2) oxidation by both Fe(3+)-oxalate and the Mn(3+) generated during O(2)(-) reduction. Finally, induction of OH production through quinone redox cycling enabled P. eryngii to oxidize phenol and the dye reactive black 5, obtaining a high correlation between the rates of OH production and pollutant oxidation.

DOI: 10.1128/AEM.02138-08
PubMed: 19376890
PubMed Central: PMC2698368


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.</title>
<author>
<name sortKey="G Mez Toribio, Victor" sort="G Mez Toribio, Victor" uniqKey="G Mez Toribio V" first="Víctor" last="G Mez-Toribio">Víctor G Mez-Toribio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Martin, Ana B" sort="Garcia Martin, Ana B" uniqKey="Garcia Martin A" first="Ana B" last="García-Martín">Ana B. García-Martín</name>
</author>
<author>
<name sortKey="Martinez, Maria J" sort="Martinez, Maria J" uniqKey="Martinez M" first="María J" last="Martínez">María J. Martínez</name>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
</author>
<author>
<name sortKey="Guillen, Francisco" sort="Guillen, Francisco" uniqKey="Guillen F" first="Francisco" last="Guillén">Francisco Guillén</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19376890</idno>
<idno type="pmid">19376890</idno>
<idno type="doi">10.1128/AEM.02138-08</idno>
<idno type="pmc">PMC2698368</idno>
<idno type="wicri:Area/Main/Corpus">001233</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001233</idno>
<idno type="wicri:Area/Main/Curation">001233</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001233</idno>
<idno type="wicri:Area/Main/Exploration">001233</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.</title>
<author>
<name sortKey="G Mez Toribio, Victor" sort="G Mez Toribio, Victor" uniqKey="G Mez Toribio V" first="Víctor" last="G Mez-Toribio">Víctor G Mez-Toribio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Martin, Ana B" sort="Garcia Martin, Ana B" uniqKey="Garcia Martin A" first="Ana B" last="García-Martín">Ana B. García-Martín</name>
</author>
<author>
<name sortKey="Martinez, Maria J" sort="Martinez, Maria J" uniqKey="Martinez M" first="María J" last="Martínez">María J. Martínez</name>
</author>
<author>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
</author>
<author>
<name sortKey="Guillen, Francisco" sort="Guillen, Francisco" uniqKey="Guillen F" first="Francisco" last="Guillén">Francisco Guillén</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Benzaldehydes (metabolism)</term>
<term>Benzoquinones (metabolism)</term>
<term>Edetic Acid (metabolism)</term>
<term>Environmental Pollutants (metabolism)</term>
<term>Ferric Compounds (metabolism)</term>
<term>Hydroxyl Radical (metabolism)</term>
<term>Manganese (metabolism)</term>
<term>Oxalic Acid (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Pleurotus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide oxalique (métabolisme)</term>
<term>Acide édétique (métabolisme)</term>
<term>Benzaldéhydes (métabolisme)</term>
<term>Benzoquinones (métabolisme)</term>
<term>Composés du fer III (métabolisme)</term>
<term>Manganèse (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pleurotus (métabolisme)</term>
<term>Polluants environnementaux (métabolisme)</term>
<term>Radical hydroxyle (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzaldehydes</term>
<term>Benzoquinones</term>
<term>Edetic Acid</term>
<term>Environmental Pollutants</term>
<term>Ferric Compounds</term>
<term>Hydroxyl Radical</term>
<term>Manganese</term>
<term>Oxalic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide oxalique</term>
<term>Acide édétique</term>
<term>Benzaldéhydes</term>
<term>Benzoquinones</term>
<term>Composés du fer III</term>
<term>Manganèse</term>
<term>Pleurotus</term>
<term>Polluants environnementaux</term>
<term>Radical hydroxyle</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The induction of hydroxyl radical (OH) production via quinone redox cycling in white-rot fungi was investigated to improve pollutant degradation. In particular, we examined the influence of 4-methoxybenzaldehyde (anisaldehyde), Mn(2+), and oxalate on Pleurotus eryngii OH generation. Our standard quinone redox cycling conditions combined mycelium from laccase-producing cultures with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-EDTA. The main reactions involved in OH production under these conditions have been shown to be (i) DBQ reduction to hydroquinone (DBQH(2)) by cell-bound dehydrogenase activities; (ii) DBQH(2) oxidation to semiquinone (DBQ(-)) by laccase; (iii) DBQ(-) autoxidation, catalyzed by Fe(3+)-EDTA, producing superoxide (O(2)(-)) and Fe(2+)-EDTA; (iv) O(2)(-) dismutation, generating H(2)O(2); and (v) the Fenton reaction. Compared to standard quinone redox cycling conditions, OH production was increased 1.2- and 3.0-fold by the presence of anisaldehyde and Mn(2+), respectively, and 3.1-fold by substituting Fe(3+)-EDTA with Fe(3+)-oxalate. A 6.3-fold increase was obtained by combining Mn(2+) and Fe(3+)-oxalate. These increases were due to enhanced production of H(2)O(2) via anisaldehyde redox cycling and O(2)(-) reduction by Mn(2+). They were also caused by the acceleration of the DBQ redox cycle as a consequence of DBQH(2) oxidation by both Fe(3+)-oxalate and the Mn(3+) generated during O(2)(-) reduction. Finally, induction of OH production through quinone redox cycling enabled P. eryngii to oxidize phenol and the dye reactive black 5, obtaining a high correlation between the rates of OH production and pollutant oxidation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19376890</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.</ArticleTitle>
<Pagination>
<MedlinePgn>3954-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02138-08</ELocationID>
<Abstract>
<AbstractText>The induction of hydroxyl radical (OH) production via quinone redox cycling in white-rot fungi was investigated to improve pollutant degradation. In particular, we examined the influence of 4-methoxybenzaldehyde (anisaldehyde), Mn(2+), and oxalate on Pleurotus eryngii OH generation. Our standard quinone redox cycling conditions combined mycelium from laccase-producing cultures with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-EDTA. The main reactions involved in OH production under these conditions have been shown to be (i) DBQ reduction to hydroquinone (DBQH(2)) by cell-bound dehydrogenase activities; (ii) DBQH(2) oxidation to semiquinone (DBQ(-)) by laccase; (iii) DBQ(-) autoxidation, catalyzed by Fe(3+)-EDTA, producing superoxide (O(2)(-)) and Fe(2+)-EDTA; (iv) O(2)(-) dismutation, generating H(2)O(2); and (v) the Fenton reaction. Compared to standard quinone redox cycling conditions, OH production was increased 1.2- and 3.0-fold by the presence of anisaldehyde and Mn(2+), respectively, and 3.1-fold by substituting Fe(3+)-EDTA with Fe(3+)-oxalate. A 6.3-fold increase was obtained by combining Mn(2+) and Fe(3+)-oxalate. These increases were due to enhanced production of H(2)O(2) via anisaldehyde redox cycling and O(2)(-) reduction by Mn(2+). They were also caused by the acceleration of the DBQ redox cycle as a consequence of DBQH(2) oxidation by both Fe(3+)-oxalate and the Mn(3+) generated during O(2)(-) reduction. Finally, induction of OH production through quinone redox cycling enabled P. eryngii to oxidize phenol and the dye reactive black 5, obtaining a high correlation between the rates of OH production and pollutant oxidation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gómez-Toribio</LastName>
<ForeName>Víctor</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García-Martín</LastName>
<ForeName>Ana B</ForeName>
<Initials>AB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martínez</LastName>
<ForeName>María J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martínez</LastName>
<ForeName>Angel T</ForeName>
<Initials>AT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guillén</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001547">Benzaldehydes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016227">Benzoquinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004785">Environmental Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1Z701W789S</RegistryNumber>
<NameOfSubstance UI="C030511">2,6-dimethoxy-1,4-benzoquinone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3352-57-6</RegistryNumber>
<NameOfSubstance UI="D017665">Hydroxyl Radical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3T006GV98U</RegistryNumber>
<NameOfSubstance UI="C004532">quinone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9E7R5L6H31</RegistryNumber>
<NameOfSubstance UI="D019815">Oxalic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9G34HU7RV0</RegistryNumber>
<NameOfSubstance UI="D004492">Edetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9PA5V6656V</RegistryNumber>
<NameOfSubstance UI="C024896">4-anisaldehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>KJ3C78Y22Z</RegistryNumber>
<NameOfSubstance UI="C019179">Fe(III)-EDTA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001547" MajorTopicYN="N">Benzaldehydes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016227" MajorTopicYN="N">Benzoquinones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004492" MajorTopicYN="N">Edetic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004785" MajorTopicYN="N">Environmental Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017665" MajorTopicYN="N">Hydroxyl Radical</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019815" MajorTopicYN="N">Oxalic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020076" MajorTopicYN="N">Pleurotus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19376890</ArticleId>
<ArticleId IdType="pii">AEM.02138-08</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02138-08</ArticleId>
<ArticleId IdType="pmc">PMC2698368</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Microbiol. 1997 Jan;34(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8433984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Jun;63(6):2166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9172335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(5):1185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Jul 10;320(2):369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7625845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1994 Nov 1;314(2):301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):3944-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Aug;60(8):2811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1997 Mar 1;339(1):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9056249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Aug;176(16):4838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8050996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 1997 Nov;27(5):447-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9518062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Oct;69(10):6025-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Apr 15;237(2):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jun;60(6):1783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8031078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Oct 15;209(2):603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1425667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Aug;64(8):2788-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Apr;64(3):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Nov 20;29(46):10475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2176868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Jan 30;195(2):369-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1997322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jan;66(1):170-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10618219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Mar 5;446(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10100613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Jul 1;367(1):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10375406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Nov 1;383(1):142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11097187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
<settlement>
<li>Madrid</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Garcia Martin, Ana B" sort="Garcia Martin, Ana B" uniqKey="Garcia Martin A" first="Ana B" last="García-Martín">Ana B. García-Martín</name>
<name sortKey="Guillen, Francisco" sort="Guillen, Francisco" uniqKey="Guillen F" first="Francisco" last="Guillén">Francisco Guillén</name>
<name sortKey="Martinez, Angel T" sort="Martinez, Angel T" uniqKey="Martinez A" first="Angel T" last="Martínez">Angel T. Martínez</name>
<name sortKey="Martinez, Maria J" sort="Martinez, Maria J" uniqKey="Martinez M" first="María J" last="Martínez">María J. Martínez</name>
</noCountry>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="G Mez Toribio, Victor" sort="G Mez Toribio, Victor" uniqKey="G Mez Toribio V" first="Víctor" last="G Mez-Toribio">Víctor G Mez-Toribio</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001251 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001251 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19376890
   |texte=   Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19376890" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020